Drawing Blanks

Premature Optimization is a Prerequisite for Success

45 degrees optimum: geometric proof

with 2 comments

In a previous post https://bbzippo.wordpress.com/2010/01/14/45-degrees-proof/ we saw that the 45 degree launch angle results in the maximum distance, because out of all rectangles having the same diagonal, the square has the maximum area. We used some basic algebra and the Pythagorean theorem to prove this fact. Now I’d like to present a purely geometric proof.


Again, let a and b be the sides of our rectangle and d be the diagonal. Let’s cut the rectangle along the diagonal, and take one half of it, which is a right triangle. Let’s arrange 4 copies of this triangle as shown in the picture. (You may recall this picture from one of the proofs of Pythagoras theorem). It is readily seen that the area of the triangle cannot be greater than 1/4 of the area of the square built on the diagonal, and that the maximum is achieved when the central square disappears, i.e. when a=b.

Now you don’t have any excuse for not teaching this to your third-graders.


Written by bbzippo

01/19/2010 at 5:17 am

Posted in math

2 Responses

Subscribe to comments with RSS.

  1. well done!


    10/10/2013 at 8:21 am

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: